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ABSTRACT 
An HA cluster is a clustering system which provides critical network services 

with high level of availability by redundant hardware and failover procedure. When 

the active cluster node fails, the backup node would take over the responsibility of 

active node through failover process. In this way, single point of failure is removed, 

and overall system downtime is then effectively reduced. 

TCP composes more than 90% of Internet traffic [1], and is most widely used to 

carry critical service. However, the behaviors of TCP flows are not considered within 

the design of HA cluster. During failover period, the packet losses experienced by 

active connections are treated as congestion signals by TCP congestion control, and 

thus reducing the flow sending rate. Also, follow the design of TCP, after failover, the 

interrupted flow could not resume its transmission until another retransmission 

timeout. 

In this thesis, we propose a local recovery mechanism for high availability 

cluster (HALR). At ingress/egress switches of HA cluster, the pass-through packets 

are selectively cached and locally resent after failover process. In this way, the 

interrupted flows could be restarted upon failover completion. On the other hand, for 

the active/active cluster, or the clusters with strings of unequal bandwidth, to address 

the potential bandwidth bottleneck problem after string failure, the post-failover rate 

control (PFRC) mechanism is further proposed. The mechanism could keep active 

connections transfer in a steady manner even with insufficient available bandwidth.  

From our simulation results, when HALR is deployed, the unused flow time 

could be eliminated. Moreover, when system bandwidth bottleneck appears after 

failover, utilizing the rate control mechanism could achieve steady system throughput, 

fair bandwidth allocation among flows, and bottleneck buffer usage reduction.  
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中文摘要 
高可用度叢集(HA Cluster)，是一種針對關鍵性的服務保障其高可用性的叢

集系統，其主要保護的對象，為提供關鍵服務的伺服器，稱為叢集節點。藉由備

援軟硬體的提供，叢集節點可以組成一個群組。當群組中任何一個關鍵元件故障

時，服務並不會就此中斷，而是經由故障轉移機制來啟動備援。這樣的備援機制

可有效移除單點失敗，並降低系統停止提供服務的時間。 

TCP 傳輸控制協議，在網路上是最普遍，也是最常使用在關鍵服務的通訊協

定。但是，TCP 連線的行為特質並未被考慮在高可用度叢集的設計中。故障轉移

期間，TCP 封包將會漏失，而這些掉落的封包則被擁塞控制機制當成網路擁塞的

訊號，並錯誤的啟動擁塞控制機制，降低傳輸速率。也使得故障轉移後，被中斷

的連線無法立即重新開始傳輸。 

在本篇論文中，我們提出一種近端回復的機制。此機制乃是藉由位於高可用

度叢集兩端的負載平衡交換機來對通過其上的封包做選擇性近端快取，並在故障

轉移完成後立即送出快取的封包，如此一來，即可達成有效率的近端回復機制。

另外，對於雙作業模式的叢集，或是擁有不對稱鏈路頻寬的叢集，考量到故障轉

移後可能發生頻寬不足的問題，我們接著提出了故障轉移後的速率控制機制，來

保證錯誤轉移後 TCP 流量可持續穩定的傳輸。 

模擬結果顯示，採用近端回復機制的叢集，能夠在故障轉移事件發生時，有

效地避免浪費系統可用卻未被使用的時間。若進一步考慮故障轉移後，頻寬不足

的情況，在加上速率控制元件之後，網路效能即可在僅受到輕微之影響的狀態

下，達成故障轉移後 TCP 連線之間公平的頻寬利用，較穩定的系統吞吐率，並

有效降低位於瓶頸的緩衝區使用量。 
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Chapter 1  

INTRODUCTION 

From users’ perspective, there is no difference between the service outages due 

to the networks and due to the servers. As a consequence, any near-source or 

near-destination single-point failure would hinder the service quality. According to [2], 

when network failures are considered, service availability is often as low as 99%, 

meaning that a server is out of service for about 15 min a day in average. To increase 

service availability, a High-availability (HA) cluster solution is often deployed. An 

HA cluster is a cluster of network devices or servers which could eliminate 

single-point of failure (SPOF) by redundant nodes and failover procedures. Thus, HA 

clusters provide better levels of availability fro critical services, such as four-9s or 

five-9s.  

A typical structure of an active/backup HA cluster is illustrated in Figure 1. In 

order to maintain states of active connections in the system, state replication messages 

are exchanged between cluster nodes which provide the same function during normal 

operations. Heartbeat messages are periodically sent between ingress/egress switches 

in order to probe link/node failure within cluster. Whenever a failure is detected, the 

backup node would take over the responsibility of previous active node through the 

failover process. The failover process shorten the total system down time from node 

repair time, i.e., minutes to hours, to failure detection plus failover time, i.e., less than 

10 seconds. This could strongly improve the availability of protected services. 
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Figure 1. The structure of a high availability cluster 

 

When failure happens on a cluster node, the failover process is required. Since 

the occurrence of cluster failovers could not be avoided, this results in temporary 

service unavailability. During this short period of system down time, packet drops are 

inevitable. Since the protocol used for critical services are mainly TCP flows, they are 

the target of failover protection. However, TCP treats packet drops as signals of 

congestion, and therefore lower the flow’s sending rate to mitigate the level of 

congestion in the Internet [3]. This may falsely impact the performance of active 

flows interrupted by failover events. Observed from our previous experiments, for 

short-lived TCP flows, it is the series of retransmission timeouts which dominate the 

failover-affected flow completion time. In this way, the effects on TCP connections 

caused by failover process shouldn’t be ignored. 

Moreover, observed from the fact that the failover process between cluster nodes 

usually means total system bandwidth reduction after failover events, unless for each 

active string, the cluster has a fully dedicated backup string with equal bandwidth. 

When the bandwidth capacity is reduced, the flows may face a bandwidth capacity 

bottleneck, which would result in a saturated buffer, unsteady throughput, and 

unfairness between flows competing for the same queue. To address this problem, an 
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adaptive rate control mechanism is required upon failover events to improve flow 

fairness. 

In this thesis, we focus on performance enhancement of TCP flows interrupted 

by the failover process of an HA cluster. From the experiment results in our work, we 

have a better understanding of TCP congestion control behaviors under failover events 

with different failover times and packet drop types, such as doubling retransmission 

timeout value after timeout events and reduced window size. The enhancing 

mechanism is then designed through analyzing these behaviors. 

In the following discussion, we consider HA clusters with two cluster nodes, 

which is the minimum requirement to provide redundancy. However, please be noted 

that the proposed mechanisms could also be applied to HA clusters with N (N>2) 

nodes.  

The rest of this work is organized as follows: Chapter 2 introduces the 

backgrounds and related works, such as enhancing TCP flow performance by local 

recovery or rate control mechanisms. In Chapter 3, we propose the HALR design and 

explain it in detail; while in Chapter 4, we describe the characteristics of TCP flows 

during failover events. By extending current TCP flow models, in chapter 5, we 

capture the effects of failovers and local recovery mechanism in terms of flow 

completion time. Furthermore, Chapter 6 shows the rate control mechanism which 

protects post-failover flow performance. Then, the simulation results are presented in 

Chapter 7. Finally, the conclusion and future work are given in Chapter 8. 
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Chapter 2  

BACKGROUND AND RELATED WORK 

This chapter reviewed the related works of protecting TCP flows during failover 

events of HA Clusters. First, the background of HA Clusters and the characteristics of 

TCP congestion control are provided for better understanding the behavior of TCP 

flows during failover. Also, TCP enhancing mechanisms, such as explicit local 

recovery and rate enforcement in different network environments, are reviewed. These 

works are described in the following sections, respectively. 

 

2.1 High Availability Cluster Modes  

There are various HA techniques for different applications and network 

infrastructures. In this work, two major modes of standard HA clusters, active/backup 

(AB) mode and active/active (AA) mode [4], are considered and shown in Figure 2 

and Figure 3. AB mode provides an idle node for redundancy, while AA mode is for 

load balancing as well as redundancy.   

A cluster in AB mode is composed of one primary node (PN) and at least one 

idle backup node (BN). Through the dedicated link (the replication link) between the 

cluster nodes, the replicated states are used to reflect the active flows on the 

pass-through link. A cluster in AA mode is composed of two or more active nodes 

(ANs) sharing the pass-through flows, both playing the role of message sender and 

receiver in replication management. The configuration in AA mode removes a 

possible throughput bottleneck and is superior in the areas of load balancing 

capability with better resource utilization and a lower throughput penalty in the case 

of failure.  

In general, an AN/PN can be backed up by a number of cluster nodes. However, 
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in this work, we consider only the single backup configuration which is often used in 

practice. 

In Figure 2 and Figure 3, on the boundary of clustering nodes, there is a pair of 

load-balancing switches (LBSes). In AA mode, the LBSes are responsible of 

distributing traffic loads evenly across two pass-through strings as well as ensuring 

that a connection passes through the same string in bi-direction. On the other hand, in 

AB mode, LBSes direct the traffic to a dedicated string. If a string failure is detected, 

LBSes redirect the traffic to the other string. 
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Figure 2. AB mode of Dual-String Stateful HA Cluster 
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Figure 3. AA mode of Dual-String Stateful HA Cluster 
 

2.2 TCP Congestion Control  

TCP is a reliable transport protocol and it treats a packet loss as a signal of 

network congestion. In TCP, packet loss recovery is integrated into the mechanism of 

congestion control. For a TCP sender, a packet retransmission can be triggered by a 

retransmission timeout, 3-duplicate ACKs for fast retransmission, or a partial ACK 

during fast recovery.  

TCP Reno and NewReno are the most popular implementations in the Internet [5, 

6]. The fast recovery algorithm of Reno is optimized for the case when a single packet 

is dropped. However, Reno still suffer from unnecessary timeouts when multiple 

packet losses within a window of data [7, 8]. As the result, NewReno [9] is proposed 

to address this problem by modifying the mechanism of fast recovery. Moreover, to 

address the problem of consecutive losses when the dropped segments are 
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non-contiguous, SACK [10] is developed. The receiver uses SACK option fields in 

TCP packets to notify the sender which contiguous blocks of packets are received 

successfully. The sender utilizes the block information to determine which segments 

are lost. Therefore, only the missing packets are retransmitted, and they could be 

retransmitted within a single RTT. In the case of a system failure and failover process, 

multiple packet losses are likely to occur. However, Reno, NewReno, and SACK 

perform exactly the same slow-start algorithm after a retransmission timeout. A 

timeout has a significant impact on TCP performance because it indicates a period of 

idle time; and the congestion window size (cwnd) is set to one segment when a 

timeout event is triggered. Finally, note that the value of retransmission timeout (RTO) 

should be no less than 1 sec [11]. Thus, when a failover process forces connections to 

timeout, the connection idle time will be at least 1 sec. 

 

2.3 Local Loss Recovery Mechanism  

In order to address the problem of packet loss due to lossy links and handoff, 

various TCP enhancement schemes have been proposed for wireless networks [12-15]. 

The group of Snoop-like protocols does not attempt to change or modify the TCP 

protocol itself. Based on link-layer knowledge of disconnection and duplicate ACKs 

for packet losses, TCP packets are buffered, removed, or delayed by a wire-wireless 

gateway. 

In wireless environments, the disconnections shorter than RTO are considered as 

a less frequent case. In contrast, our works focus on the influences of a range of small 

failover time (less than 12 sec) and the memory requirements in high-speed networks. 

Furthermore, these Snoop-like solutions relied primarily on simulation and testbed 

experiments. Also, analytical modeling for the impact of handoff events on TCP 

performance was not presented in the previous works. 



 

 8

 

2.4 Rate Control Scheme  

To control the sending rate of TCP flows by edge devices in different network 

environments, several mechanisms are proposed [16-22]. The main purpose of rate 

control is to make each active flow obtain their fair share of available bandwidth. To 

determine a proper sending rate under current network condition, these schemes 

require bandwidth monitors on input rate and target rate. Then, available bandwidth is 

fairly allocated to active connections.  

There are two major approaches on allocating bandwidth: window sizing [16, 19, 

20] and ACK pacing [18, 21]. The former controls the TCP sender’s sending rate by 

modifying receiver’s advertised window size in TCP acknowledgments, while the 

latter takes effect by buffering ACK packets in middle devices and release them 

according to the proper rate. 

In this thesis, in order to address the potential bandwidth bottleneck after cluster 

failover, a window sizing approach is adopted at LBSes to control the flow rate. We 

select the approach of window sizing for its simplicity, and it does not require any 

additional queue to buffer ACK packets.  
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Chapter 3  

HIGH AVAILABILITY LOCAL RECOVERY MECHANISM 

DESIGN 

3.1 Overview 

The main purpose of HALR is to eliminate idle time for flow transfers after 

failover. To achieve this goal, local kick-start mechanism should be deployed. We 

place this mechanism on the load balancing switches, because those switches keep 

track of the status of active node/string. HALR has the following two key operations: 

the first is to selectively cache the incoming packets during the normal status; the 

second is to locally resend the cached packets after the failover is completed.  

For loss recovery, TCP regards all packet losses as notifications of traffic 

congestions, and then retransmits the unacknowledged segments for end-to-end 

reliability. However, when cluster failure happens between two TCP endpoints, 

retransmissions are not useful until the failover is finished. If the failover time, 

denoted as , is quite long, the TCP back-off algorithm may continues to 

double RTO until a threshold is reached or an ACK packet arrives. This mechanism 

causes a severe unused flow time (UFT) problem even the cluster is ready after a 

failover, the retransmission of the TCP sender is not performed until the scheduled 

time. This would result in temporarily low link utilization. In this work, we define an 

UFT as the time between the failover termination and the scheduled time for the next 

packet retransmission as shown in Figure 4. 
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Figure 4. Unused Flow Time 

 

For a short flow (say less than 500 ms), a failover-related TCP timeout may 

significantly lengthen the flow completion time. As a basic performance metric from 

end-user point of view, the flow completion time of a connection is its total 

transmission time. Obviously, lower latencies indicate better TCP performance. On 

the other hand, for a long flow with high-bandwidth, a failover-related TCP timeout 

causes a throughput degradation because the connection would take several round trip 

times (RTTs) for achieving the original throughput. For minimizing these 

failover-related effects, besides a small , it is necessary to minimize the 

possibility of TCP timeouts and the time delay caused by a failover. Thus, we propose 

the HALR scheme to enhance TCP performance over a failover event. 
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3.2 Design of HALR Switch 

The basic idea behind the HALR scheme is that if packets are lost due to the 

transmissions across the cluster string during a failover, the edge switches (i.e., HALR 

switches) take the responsibility to recover these lost packets. In Figure 5, the HALR 

switch keeps track of state information from every pass-through TCP packets and 

saves certain numbers of unacknowledged data packets and ACKs into Local Cache 

(LC). Once the failover is finished, the switch performs local recovery by resending 

immediately the cached packets to the TCP endpoints that may be waiting for 

timeouts. After resending, cached packets could be released. 

 
Figure 5. HALR Switch Design 

 

As a result of resending, TCP implementations simply regard the resent data 

packet as a delayed segment of the connection and the resent ACKs fire up a quick 

retransmission immediately. Ideally, the resent packets minimize the possibility of 

issuing a timeout signal at the TCP sender and eliminate an unnecessary UFT. On the 

other hand, if the  was too long (e.g., over 9 min) and the connection was 
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already closed, the TCP sender would ignore the resent packets. 

 

3.3 Packet Caching Policies 

The caching policies for the HALR scheme can be classified into two types 

according to whether or not the packet is going to traverse the cluster in the rest 

transmission. 

First, for the packets leaving the cluster, the HALR switch replaces the buffered 

packet if the new packet has a higher acknowledgement number. When performing 

local recovery, each (ACK) packet is resent for at least 3 times for triggering the fast 

retransmission at TCP sender. If the fast retransmission is triggered before the 

scheduled RTO (i.e., a short ), the TCP sender can thus retransmit 

immediately the lost packet indicated by 3-duplicate ACKs. On the other hand, if a 

timeout has already occurred in the TCP sender due to a longer , cwnd has 

also been set to one segment and then 3-duplicate ACKs are not useful to keep a 

larger cwnd. 

Second, for the packets not yet entering the cluster string, the basic idea is to 

save unacknowledged packets into LC for resending them by local recovery. These 

resent packets will be acknowledged by the receivers and then the connections are 

woken up as normal. The first caching policy is to buffer all unacknowledged packets. 

Thus, an HALR switch may buffer a full window of packets (e.g., 64 Kbytes) in 

maximum for a single direction of one connection. Apparently, this policy may 

require lots of memory space in the HALR switch and result in high network 

bandwidth consumption when resending all cached packets. More importantly, it 

requires a packet-copy operation for each unacknowledged segment. It is well known 

that the memory copying should be performed as little as possible, especially in 

elementary procedures for every packet. This policy may be acceptable in wireless 
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networks, but it incurs very large overheads in high-bandwidth networks. Thus, 

another policy is to save only one unacknowledged data packet (with the lowest 

sequence number). Though this policy may force the sender to retransmit a full 

window of data packets in worst case, the memory requirements and memory 

operations in the switch can be greatly reduced. Finally, the switch can only save 

SYNs received during the failover when  is less than the initial RTO for SYN 

loss. As discussed in Section 4.2, this policy resumes the transmission without waiting 

for the initial RTO and it further minimizes the memory requirement by ignoring the 

unacknowledged data packets and ACKs. 

About caching timing, the HALR switches can save the pass-through packets 

when the cluster works well. However, the operations of memory copying can be 

significantly reduced if the caching is started before the failover process. Realize that 

a failover is usually declared after the heartbeat message losses in a row and exceed a 

small threshold (e.g., three losses). The purpose of this strategy is to make sure that 

the failover procedure is taken place only when it is necessary; we do not know 

whether a heartbeat loss is caused by a system crash or just a temporary high CPU 

load that makes the heartbeat unable to be delivered in time. Therefore, we propose to 

start the caching before a failure declaration but after at least two heartbeat losses in a 

row. Another advantage of this policy is to avoid the caching and resending for idle 

connections because only the active packets during the failover are saved.  

In summary, in order to achieve the smallest memory requirement and memory 

operations, the combination of caching policies need to: 1) start to cache before a 

failure declaration, 2) for the packets not passing through the cluster, only save the 

packets with the highest acknowledgement number, and 3) for the packets passing 

through the cluster, save the lowest unacknowledged packets or save the SYNs only. 
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3.4 Memory Requirements for Packet Caching 

We estimate the memory requirement for HALR by the trace-based simulation, 

which gives us a practical picture of memory requirement. The caching policy is to 

buffer two packets (one for data and the other for ACK) per connection in maximum. 

TCP stateful tracking is applied to the bi-directional 24-hour packet trace (denoted as 

AUCK-4) from NLANR [23] that was captured at the University of Auckland in 2001. 

By tracking the sequence/acknowledgement numbers and packet sizes of every active 

TCP connections, the maximum memory requirement of HALR can be estimated. In 

AUCK-4, the maximum buffer size is 792 Kbytes and the average size is 305 bytes 

per connection.  

In practice, network traffic is time and link dependant and it is impossible to 

measure memory overheads by all traffic mixes. For example, suppose that the packet 

sizes for data and for ACK are 1,514 bytes and 64 bytes on a single connection. For 

caching 10,000 active flows, HALR will need to save 15.78 Mbytes. However, we 

believe that the memory requirement is quite likely to be much smaller when the 

HALR switch only saves the packets of specific connections, like the Top-100 heavy 

hitters. Finally, consider a high-end HA cluster for protecting a web site whose setup 

connection rate is 10,000 conn/sec and  is 100 ms. If only the SYNs received 

during the failover are cached, the memory requirement in this case is roughly equal 

to 64 Kbytes, which is not a concern for modern network equipments. 
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Chapter 4  

OBSERVATION: INFLUENCES OF HALR ON TCP BEHAVIOR 

In this section, we discuss the influences of introducing HALR into an HA 

cluster. Besides eliminating unused flow time (UFT), HALR may result in different 

behaviors of congestion control under some particular circumstances and thus affect 

the performance significantly. 

 

4.1 Timeline around a Failover Event  

Figure 6 illustrates the connections arrive around a failover process. Let t be the 

time instance of the timeline in Figure 6. Consider the following scenario: when t = t2, 

a failover event occurs, and the process is finished at t = t3, resulting in a  of 

(t3–t2). Also, t1 is defined as “one normal flow completion time before the failover 

begins”. On the timeline, the flows getting through the HA cluster could be 

categorized by the arrival time of their first SYN packet, tarrival, as following: 

• Case 1: Flow ended without affected by failover. If tarrival < t1 or tarrival > t3, 

the completion of the flows would not be postponed, that is, all flows arriving 

before t1 or after t3 will finish sending all segments within a normal 

completion time. 

• Case 2: Data-packet loss due to failover. For the flows whose SYNs arrive 

between the time t1 and t2 (t1 < tarrival < t2), i.e. less than one flow completion 

time before the failover event happens. The packet transmission would be 

interrupted before their termination. 
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• Case 3: SYN loss due to failover. For the flows that their SYNs arrive between 

the time t2 and t3 (t2 < tarrival < t3), i.e. during failover period, the SYNs would be 

lost. 

Based on whether the flow completion is delayed by the failover or not, the 

flows belonging to Case 1 are called “normal flows” and the flows in Case 2 and Case 

3 are called “abnormal flows”. We use  and  to indicate “normal flow 

completion time” and “abnormal flow completion time”, respectively. 

 

 

Figure 6. Timeline around a failover event 
 

 

4.2 Analysis  

First, we discuss the influences of introducing HALR on the flows belonging to 

Case 2. When  > RTO (e.g., 1.5 sec), TCP flows using TCP Reno, NewReno, 

and SACK could not avoid a timeout event. And, all the three variants employ the 

slow-start algorithm after timeout events. In this case, HALR can eliminate UFT by 

triggering the packet transmission before a timeout. Furthermore, note that two 

consecutive timeouts can result in performance degradation significantly and should 

be avoided. As shown in Figure 7, besides the idle period from the exponential 

back-off algorithm, after two consecutive timeouts, cwnd will be set as one and 

slow-start threshold (ssthresh) is set as two segments by the equation: ssthresh = 

max(cwnd/2, 2). As a result, after two packet transmissions, the sender enters the 



 

 17

congestion avoidance mode and cwnd is limited to grow linearly, i.e., roughly one 

packet per RTT. As our evaluation results shown in Chapter 7, when HALR is 

enabled, TCP can avoid some of the retransmission timeouts that would otherwise be 

experienced. On the other hand, if  < RTO, even HALR resends 3-duplicate 

ACKs to the Reno sender, multiple packet losses within a window of data could still 

result in a timeout. Instead, for NewReno, HALR can trigger a fast retransmission and 

then partial ACKs received during fast recovery recover the lost packets without a 

timeout. Furthermore, HALR resending the unacknowledged packet to the NewReno 

receiver can accelerate the recovery from multiple packet losses. 

Next, we discuss the impact of HALR on the flows belonging to Case 3. The 

initial cwnd is one and the initial RTO for SYN is usually set to 3 sec. Therefore, 

different from the flows of Case 2, when a single timeout occurs for a SYN loss, 

ssthresh is set as two. Furthermore, note that even with a small  (say 100 ms), 

the retransmission of a SYN loss must be triggered by a lengthy timeout (say 3 sec). 

Figure 8 shows that, with HALR, the flow resumes its transmission without waiting 

for a lengthy timeout. More importantly, the sender still remains in the slow-start 

mode that increases cwnd exponentially. In contrast, the flow without HALR increases 

cwnd linearly. Thus, if possible, the initial timeout for a lost SYN should be avoided, 

especially for short flows. 
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Figure 7. Congestion Window Evolution for Case 2: Data Drop Flows 
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Figure 8. Congestion Window Evolution for Case 3: SYN Drop Flows 
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Chapter 5  

MODELING FAILOVER FLOW COMPLETION TIME 

In this section, we extend existing analytical TCP Reno flow models on transfer 

latency for both short flows [24] and long flows [25] to predict the effects of different 

failover times and the improvement by the HALR scheme. Table I lists the parameters 

used in the following discussions on the flow models. 

Table I. Parameter list for modeling 

Notation Description Value 
Lsim The length of evaluation 15 sec (t = 0–15) 

Tfailover Failover time 50 ms–12 sec 

p Data segment loss rate 0.1% 

ps SYN packet loss rate 0.1% 

To Initial timeout for data segments 1.5 sec 

Ts Initial timeout for SYN packets 3 sec 

R Average RTT 100 ms 

D Data segments in one flow D  = 9 for short, 
1000 for long 

W Initial congestion window size 1 

Wmax Max congestion window size 64 

 

5.1 Additional Time Delay from a Failover 

Through extending the modeling in [24, 25], we are capable of obtaining the 

abnormal latency, . The main idea is that when a connection encounters a failover 

event, it would be postponed by an additional delay. In Case 2, the additional delay is 

a series of timeouts , while in Case 3, the additional delay is a series of . The 

notation  is used to denote the Additional Delay of a specific flow incurred 
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from the failure event, given the failover period encountered by a specific flow, . 

Note that T is the RTO value when flow interruption happens. On the other hand, 

 could be computed as the duration between the flow interruption time point 

(first packet drop due to failover) and the time point of failover termination.  

 

To compute the  of a connection, assume that there are totally x times of 

timeouts triggered by a failover event, then the time period of the additional delay is 

equal to a series of  timeouts. , while  is 

the minimum number satisfying: . However, if HALR is 

deployed, the delay incurred by a failover is not  any more. Instead, the flow 

protected by HALR is simply delayed by , which is shorter than ; 

namely, an UFT is eliminated. 
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Figure 9. Unused Flow Time vs. Flow Down Time 

 

Moreover, when HALR is not deployed, UFT can be directly computed from the 

timeouts and the down time experienced by the flow: . 
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Namely, UFT is equal to a series of timeouts minus . Thus, 

.  Figure 9 further shows that UFTs have a “sawtooth” effect. 

 

5.2 TCP Short Flow Models 

In [24], the latency (flow completion time) of a single normal flow was modeled. 

The completion time is composed of two parts,  and . Namely, . 

 represents the connection establish time, while  is the average time needed for 

sending m data segments with an initial congestion window size w. The  could be 

computed recursively by the equation, . For example, consider 

sending 3 data segments (  = 3) and w is equal to 1, the latency  would be 

 and each component is computed as listed below. 

 

 

 

 

 

Where  denotes the average RTT,  and  represent the initial timeout value 

for data segment and SYN packet, respectively. The   is the drop/loss rate of 

data (SYN) packets and . 

For Case 2 in Figure 6, consider a flow with  segments to transfer, assume 

that there are i packets arrive on a specific flow before the failover begins, but the 

flow hasn’t been completed yet, that is, i < . In this case, subsequent non-SYN 

packets will be lost continuously until the failover succeeds. The  belonging to 

Case 2 could be computed through Eq. (1) for not deploying HALR and Eq. (2) for 

deploying HALR. 
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                               (1) 

                            (2) 

 

In Eq. (2), we define the time required to locally resend the cached packets by an 

HALR switch as . Assume  is a small delta when compared to  and  and 

it can be ignored. 

For Case 3, when there are flows trying to send SYNs to the servers during the 

failover, the SYNs would be lost continuously. After the failover, the retransmitted 

SYNs will be accepted and pass through the cluster.  of Case 3 could be computed 

through Eq. (3) for not deploying HALR and Eq. (4) for deploying HALR. 

                                        (3) 

                                    (4) 

 

5.3 TCP Long Flow Models 

Note that the flow models mentioned above only cover the slow start phase of 

TCP connection. Also, the complexity grows exponentially when the number of total 

segments increases since all loss conditions need to be considered. Thus, the 

long-flow modeling is necessary to complement the short flow model. In [25], the 

total latency  of a TCP long flow is evaluated as a function of packet loss rate , 

transfer size , and average RTT, . The basic equations of long flow modeling are 

listed below. 
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Similar to the above short flow models, the expected latency for long flows is 

composed of the expected time of connection establishment phase  and the 

time to transfer  data segments . The data transfer part of long flow, , is 

composed of four components:  

I) , the expected latency in slow start.  

II) In the end of the slow start, packet losses occurs,  is the cost for fast 

recovery or timeout losses.  

III) After loss recovery, the connection enters congestion avoidance phase, the 

expected time period in congestion avoidance, , is computed as the 

expected segments transferred in congestion avoidance,  = 

, divided by a steady state throughput equation in [26].  

IV) At last, a cost  is added to reflect the effect caused by delayed 

ack mechanism if w is 1. The cost is equal to 150 ms for MS Windows 

platforms and 100 ms for BSD systems. 

For Case 2 in Figure 6, if there is no HALR mechanism, we define the affected 

data transfer time as . Since we assume that the packet loss always happens in 

congestion avoidance phase, the affected flow latency  could be modeled by 

modifying the expected time  to . Thus, the equations for computing  

of long flows can be written as following: 

                                  (5) 

  

 

After a data-packet loss, the connection would enter slow start phase again. The 

modified  could be evaluated as below.  
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Assume that there are j packets arrive before the failover begins (j < ), there 

would be  segments left to transfer after a failover, and the method to 

obtain the corresponding data segments sent in different phases after failover is quite 

straightforward.  

Before failover, the number of segments transferred in congestion avoidance is 

.  

After failover, depending on the total segments left to transfer, there are two 

possible conditions of an interrupted long flow: First, the flow finally ends in slow 

start; second, the flow leaves slow start phase and ends in congestion avoidance phase. 

In the previous case, the number of segments transferred in re-entered slow start phase 

is ; and for the latter case, the number of segments transferred in 

re-entered congestion avoidance phase is . Similar to the 

relationship between  and ,  could be computed as  

divided by steady-state throughput, and so on. Without HALR, assume that  

is longer than the flow packet inter-arrival time. The modified data transfer latency 

 is given here:  

 

On the other hand, if HALR is deployed, the latency could be modeled as below. 

Note that although HALR could reduce the probability of timeouts, if  > 

RTO, the flow with data segment losses still enters slow start. However, if  < 

RTO, a flow could be restarted by 3-duplicate ACKs or the resent unacknowledged 

packets immediately. If HALR is deployed and the flow is restarted by 3-duplicate 

ACKs,  is the segments transferred in congestion avoidance phase 
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after failover. Below, two situations are considered separately. Note that HALR 

reduces the failover-related time delay to the flow from  to . 

1. If  

                        (6-1) 

2. If  

                        (6-2) 

        

For Case 3, the affected latency for long flows is relatively simple. If HALR is 

not deployed, the latency could be computed through Eq.(7). Otherwise, if HALR is 

deployed, the affected latency equals to Eq. (8). 

                                  (7) 

                                  (8) 

 

 

 

 

 

 

 

 



 

 26

 

Chapter 6  

EMPLOYING RATE CONTROL AFTER FAILOVER EVENTS 

6.1 Rate Control Motivation 

Throughout previous discussions, we consider the case of active/backup clusters 

with strings of equal bandwidth. Using this specific setting, the system bandwidth 

remains unchanged after failover events. Therefore, the system would have enough 

bandwidth to process post-failover flows if a failover is happened. However, in 

practice, it is possible to have different bandwidth consumption after failover. For 

example, take a look at an active/active cluster, assuming two active strings have 

equal bandwidth. Then the capacity of system processing is halved upon link/node 

failure. This kind of situation would become even worse for the case of unbalanced 

link bandwidth, for example, the bandwidth of active (failure) string is twice as much 

of the backup (remaining) string. In these cases, after a failover event, when the 

failover flows restart transmitting packets, if the connection establishing rate is at the 

same level, it may face a post-failover bottleneck. When a bandwidth bottleneck 

exists, the buffer usage would grow up and finally being saturated, resulting in buffer 

overflows and therefore packet drops. Those packet drops due to buffer overflow 

would cause throughput fluctuations, longer flow completion times, etc. To address 

this problem, we employ an adaptive rate control mechanism to allocate a fair share of 

aggregate flow rate to each active flow.  

When the bottleneck locates at the post-failover cluster node link, an adaptive 

rate control mechanism is vital. Such a mechanism could stabilize the transfer rate of 

connections passing through the cluster. It could not only reduce the buffer 
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requirement and ensure flow fairness, but also achieve better user-perceived service 

quality.  

 

6.2 Design of Rate Control Scheme 

In this work, the window adjustment approach is utilized. According to the 

description in [27], the sending rate of TCP flows is determined by their window sizes, 

the actual window size is the minimum of congestion window and receiver advertised 

window(awnd), min(cwnd, awnd). Therefore, the flow rate could be effectively 

controlled by adjusting advertised window. Same as the local recovery mechanism, 

the rate control scheme could be employed on LBSes since each LBS has the full 

knowledge of when failover period begins and ends. As Figure 10 shows, a rate 

control module is attached to LBSes. 

With the rate control module in hand, the next question would be: when to 

trigger the rate control? In order to deal with the potential bandwidth bottleneck after 

failover, the rate control module is activated upon receiving failure alert, until receive 

the link recovery notification of previous failed string. During this time period, a 

modified window value is computed periodically and used as an upper limit of 

receiver’s advertised window size for active pass-through flows. At the end of each 

pre-defined time interval, the feedback value is generated. For each incoming ACK 

packets, if the advertised window size exceeds the value computed by LBS, the 

receiver's advertised window would be reduced to the computed feedback value by 

modifying receiver advertised window field in this ACK packet.  
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Figure 10. The integration of Rate Control Module on LBS  

 

In the rate control module, the main operations could be divided into window 

computation and window update, the detail of window computation and update are 

described in the following section. 

 

6.3 Rate Enforcement Method 

When rate control is activated, a window modification function is carried out to 

pose a limitation on the pass-through flows. The window adjustment function is 

shown as below: 

   (9) 

 
                  (10) 

 

Where  is the computed window feedback value calculated 

at the end of nth interval, and will take effect during n+1th interval. In Eq(9),  

means the granularity of time interval,  is round-trip time,  is an adjustable 

parameter to add a weight to the monitored data during the latest monitoring interval, 

which is set to 1 by default, and  is the total number of currently active 
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connections.  is the total number of bytes received during the estimating 

time interval , and  represents total number of bytes that the cluster 

string is capable of processing over the interval . Which could be computed as 

link bandwidth × . The utilization factor  is used to represent the target 

bandwidth utilization ratio (e.g. 95%). 

Note that for all active connections, the same window feedback value is 

computed. Therefore, LBSes do not have to maintain per-flow state information. Also, 

in Eq(10), the term  is used as a lower bound of window feedback. If the 

computed feedback value  is lower then the configured lower 

bound, the actual window feedback would be set as . The main purpose of 

this control mechanism is to avoid a computed tiny window from taking effect, which 

may be severely harmful to the sending rate. 
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Chapter 7  

SIMULATION RESULTS 

7.1 Simulation Configurations 

To prove the effectiveness of proposed mechanisms, the Berkeley’s network 

simulator ns-2 [28] is used to simulate the different scenarios under active/active and 

active/backup HA Cluster modes. The general topology is depicted in Figure 11, 

which is the dumb-bell topology. 

 

 
Figure 11. Simulation topology 

 

We use 3 nodes, R1, N, and R2, to simulate an HA Cluster. In the HA cluster, R1 

and R2 are boundary LBSes, while N represents cluster nodes. Local recovery and 

window control modules are implemented by extending ns-2 queue object in LBS 

nodes. The dropping policy of all buffers is DropTail. Note that the HA cluster is 
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deployed close to the destination nodes, D0 to Dn-1. For simplicity, single direction 

data transfer (left to right) is assumed. 

 

7.2 Analysis on Improvements of HALR 

In this section, we will use simulations to illustrate some of the influences and 

validate our analysis in Section 4.2. Note that an active/backup cluster with equal 

bandwidth strings is considered throughout this section.  

 

7.2.1 Simulation Topology of HALR 

In the topology depicted in Figure 11, the HA cluster link is shared by TCP 

flows originated from TCP source nodes, S0 to Sn-1. The experiments are carried 

for short flow and long flow transfers. The flow transfer sizes are 10 and 1,000 

segments for short flows and long flows, respectively. The maximum segment 

size is set to 1,460 bytes. TCP Reno, NewReno, and SACK with delayed ACK 

mechanism are adopted in our evaluations. The dropping policy of all buffers is 

DropTail. The buffer size of the gateway is set to be large enough to prevent 

buffer overflow.  

The failovers on the topology are simulated by taking down the 

pass-through string during failover periods. At time = 2 sec, two links in the HA 

cluster are brought down to simulate the cluster failure and the failover 

procedure.  is the experiment parameter, which ranges from 50 ms to 12 

sec. 

 

7.2.2 Failover Time vs. Flow Completion Time 

Figure 12, Figure 13, and Figure 14 shows the flow completion times for 

transferring 10 segments under different flow arrival times. Since  for 10 
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segments is about 0.6 sec, the flows arriving between 1.4 sec and 2 sec belong to 

Case 2. For the flows arriving between 2 sec and (2 + ) sec, they belong 

to Case 3. 

From Figure 12 to Figure 14, we can see that the flows protected by HALR 

are less harmed by a failover, while raw TCP flows have to pay the cost of UFTs. 

As expected, Figure 14 shows that without HALR, the flows of Case 3 have to 

wait for lengthy timeouts for retransmissions. It indicates even a small  

is achieved, without HALR, the flows belonging to Case 3 increase its latency 

from 0.6 sec to 4.01 sec. On the other hand, the HALR-protected flows resume 

transmission after a 500-ms failover. The resulting  values are between 800 

ms and 1.9 sec.  

In Figure 13, a small group of flows (arriving at between 1.8 sec and 2 sec) 

without HALR have latencies about 10 sec, (namely, the  derived from 

 is  = 9 sec), while the flows with HALR keep the completion 

times around 4 sec. The improvement of HALR becomes more obvious in Figure 

14 that 40% of the incoming flows during the failover wait for an additional 9 

sec to retransmit and the other flows wait for 3 sec. By contrast,  with HALR 

only depends on . Furthermore, in Section 7.3, through modeling analysis, 

we will show that  less than or close to 3 sec is a boundary for a good 

failover time. The test results here are consistent with our analysis. 
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Figure 12. Flow completion times vs. flow arriving time (failover = 0.5 sec) 

 

 

Figure 13. Flow completion times vs. flow arriving time (failover = 3 sec) 
 

 
Figure 14. Flow completion times vs. flow arriving time (failover = 5 sec) 
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7.2.3 Failover Time vs. Retransmission Timeout 

Figure 15, Figure 16, and Figure 17 shows the retransmission timeout 

distributions of the flows (1000-segment) belonging to Case 2 under a range of 

failover times (50 ms – 12 sec) with different TCP implementations. In each pair 

of bar with the same failover time, the left one is the result with HALR and the 

one on the right side is without HALR. First, we find that when HALR is 

enabled, TCP can indeed avoid some of the timeouts that would be experienced 

if without HALR, especially in NewReno and SACK with  < 1 sec. 

HALR also avoids some of consequent timeouts which make ssthresh become 

two segments when  = 3 sec. We notice that the improvement of HALR 

for NewReno is more than that for Reno. This is because if multiple packets are 

lost in one congestion window, Reno has a higher probability to cause sender 

timeout which can not be eliminated by HALR. Moreover, with SACK options, 

the number of timeouts could be further reduced when  < 1 sec. The 

reason is that upon receiving out-of-order packets, SACK sender is notified with 

missing segments and resends them without waiting for a timeout. Finally, when 

 > RTO, Reno, NewReno, and SACK have the same behaviors on the 

timeout distributions because the major difference between Reno, NewReno, and 

SACK only lies on the modification of fast recovery; the three TCP 

implementations all employ slow-start after a retransmission timeout. 
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Figure 15. Number of timeouts of the flows in Case 2: TCP Reno. 
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Figure 16. Number of timeouts of the flows in Case 2: TCP NewReno. 
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Figure 17. Number of timeouts of the flows in Case 2: TCP SACK. 
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7.3 Model Validation 

The modeling results are compared to ns-2 simulation results to validate the 

extended models.  Figure 18 and Figure 19 present the relationships between the 

 (from 50 ms to 12 sec) and  measured by ns-2 simulation and estimated 

based on short flow and long flow models, respectively. The modeling results, 

including the maximum and minimum  values, are depicted by lines; while 

simulated latencies by ns-2, including  and  (normal flow completion time), are 

represented by one dot per connection (blue dots for latencies with HALR and red 

dots for latencies without HALR). 

First, for raw TCP without HALR (the general case of HA clusters), a  

= 3 sec (the default value of the pfsync [29]) seems to be a boundary of the 

“good-enough” failover times. For example, in Figure 18, when < 3 sec, the 

maximum  is less than 5.3 sec. However, when  = 5 sec, the maximum  

becomes 11.2 sec. Thus, if a false failure declaration is possible, it could be inferred 

that enforcing a  close to or less than 3 sec might be a good balance.  

Second, Figure 18 shows that HALR effectively reduces the  for all failover 

times. This result is advantageous to the delay-sensitive applications, such as WWW. 

Note that the maximum  of raw TCP is affected non-linearly by the characteristics 

of doubling TCP timeouts. With HALR, the maximum  grows linearly when 

 increases because the sawtooth effect of UFT is eliminated. In this way, the 

latency over a failover is no longer bounded by RTO values but . Therefore, 

through HALR, TCP flows could take full advantage of small failover times. 

Otherwise, for a HA cluster without HALR, the end results of TCP performance 

around a failover seemingly diminish the efforts of achieving accurate state 

replication (even for short flows) and a very low failover time. 
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We find that the  values from short-flow modeling and from simulation have 

close agreement with each other. However, in Figure 19, although the results of long 

flow modeling follow the similar trend as in Figure 18, some inaccuracy is observed 

between the simulation results and modeling estimation. This is mainly due to the 

effect of ssthresh =2 problem described in Section 4.2. The gap separating ns-2 flow 

completion times into two major groups, representing the difference between Data 

drop flows with or without consecutive timeouts, or SYN drop flows with or without 

single timeout. 

 
Figure 18. Short flow model validation 
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Figure 19. Long flow model validation 

 

7.4 Improvements of Post-Failover Rate Control 

During the simulation of rate control mechanism, an active/active cluster is 

considered. And various string bandwidth ratios are tested. Cluster failover is 

simulated by halving (or proportionally cutting) system bandwidth and dropping 

active flows on failed string. We carried an extensive set of experiments with various 

parameters settings; however, unless stated otherwise, the basic configuration is used 

as described as the following. 

At the beginning of simulation, two strings are both actively processing flows 

passing through them. The TCP flows are distributed by LBSes into 2 groups; each is 

processed by one active string. For each group, there are 50 TCP flows; each is 

transferred between one source-destination pair, that is, S0 to D0 or Sn-1 to Dn-1, 

respectively. From time=0, for each 250msec, a new connection is established from 

each group. Again, MSS=1460 byte, and each flow transfers 3000 packets in total. 
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The link capacity is set to 100Mbps for each string and other network links. 

Therefore, for an active/active cluster with equal string bandwidth, the system 

capacity would fall from 200Mbps to 100Mbps upon failover. Since the main focus 

here is the bandwidth bottleneck issue after failover events. In this section, a typical 

failover period, 3 sec, is chosen for illustration. At time t = 5 sec, a failover starts, and 

the failover ends at t = 8 sec. It is also validated through other simulation sets that 

using different failover times will not affect the macroscopic system behavior, such as 

aggregate throughput evolution, after failover events. 

For the bottleneck buffer size, the buffer size limit for router R1 is set to 750 

packets, which is about the size of network bandwidth-delay product (for 100Mbps 

link) unless stated otherwise. 

 

 

7.4.1 Throughput Analysis 

We define the string experiencing failure as failure string, and the other 

string as remaining string. As described in previous section, the failover period is 

between t = 5 sec and t = 8 sec. During this time period, although newly 

connections arriving at the cluster would be directly assigned to the remaining 

string by LBS, the active connections on failure string would experience 

temporary service interruption.  
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Figure 20. Throughput vs. time: without rate control 

  
Figure 21. Throughput vs. time: with rate control 
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In Figure 20 and Figure 21, the aggregate throughputs vs. timeline with and 

without post-failover rate control are depicted, respectively. The total throughput 

is composed of those generated from passed flows and failover flows. Passed 

flows represent the flows without experiencing failover during their lifetime. 

While the failover flows are those assigned to the failure string, and were 

interrupted when failover happens. After failover, they are switched over to the 

remaining string.  

If there is no post-failover rate control, although the aggregate throughput 

after failover remains at the level of available bandwidth, the fluctuations are 

apparent on total throughput due to the active flows, including those haven’t 

completed when failover happens and those arrive after failover, compete for 

insufficient bandwidth. In this case, a proportion of post-failover transfers require 

longer times for completion. 

On the contrary, if post-failover rate control is deployed, although the total 

throughput after failover may be slightly lower due to the under estimation of 

window adjustment functions, the aggregate throughput has better smoothness. 

The smoothness comes from the explicit allocation of bottleneck link bandwidth 

achieved by post-failover rate control. From Figure 21, it could be inferred that 

through rate control mechanism, better per-flow fairness is achieved. Also, by 

mitigating the problem of bandwidth competition, the bottleneck buffer size is 

reduced, as we will present in later sections.  
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Figure 22. Aggregate throughput comparison (a) during simulation (b) zoomed-in. 
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7.4.2 Per-flow Fairness 

To further illustrate the fairness characteristic, we use the metric “per flow 

bandwidth utilization ratio” to measure the fairness between each active flow. 

Since there are number of TCP flows during simulation period, only 10 flows 

within 100 flows are sampled and plotted.  The simulation results with and 

without post-failover rate control are depicted in Figure 23 and Figure 24, 

respectively. 

From Figure 23, it is observed that due to the resource contention, some 

flows, especially for those begin after failover, fail to attain their fair share of 

bandwidth until previous active flows finish their transfers. There are also some 

throughput drops followed by throughput bursts during the simulation period, 

representing that some flows experienced packet loss thus reducing their sending 

rate, therefore flow completion are postponed. On the other hand, in Figure 24, 

the throughput share after failover distributed by rate control is illustrated. In this 

figure, it could be seen that the throughput shares among flows are fairly 

allocated. Even for newly arrived flows after failover event, they would not grow 

over existing flows. By explicitly allocating available bandwidth among total 

active flows, a reasonable bandwidth usage is achieved. As a consequent, for 

every flow, no throughput degradation due to packet loss is observed during 

simulation period. 
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Figure 23. Per flow fairness: without rate control 

  

Figure 24. Per flow fairness: with rate control 
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7.4.3 Bottleneck Buffer Size 

From the aspect of router buffer size on bottleneck link (R1 N), the results 

with rate control and without rate control are shown below. In general, if 

post-failover rate control is deployed, the buffer size requirement would be much 

lower, which is the result of proper bandwidth adjustment. However, if there is 

no rate control, buffer size could not be effectively controlled and finally being 

saturated. A buffer with high usage would result in longer queuing delays. Also, 

packets drops due to buffer overflow are incurred.  

In Figure 25, the bottleneck buffer limit for LBS node, R1, is set to 1500 

packets, while in Figure 26, the buffer limit is set to 750 packets, which is about 

twice or the size of network bandwidth-delay product for 100Mbps link. When 

there is no protection of rate control, because the sending rate exceeds available 

bandwidth, buffer grows fast and overflows will eventually happen. It is even 

worse in the case of smaller buffer. For example, when buffer limit = 750 

packets, the buffer overflow occurs more frequently than the case of 1500-packet 

buffer size. There are eight surges (rather than 3 surges) of buffer overflows 

during a 20-second post-failover transferring period. However, for both figures, 

by employing rate control, the buffer requirement is restrained well with a 

maximum level of 600 packets. 

Note that, if we utilize even larger buffer size, such as a limit of 3000 

packets; although the saturation of the buffer could be postponed, it could not be 

avoided. Moreover, a large amount of buffered packets would result in even 

longer queuing delays. And it may possibly trigger retransmissions falsely for 

packets still buffered in queue, thus aggravating the consumption of the 

bottleneck buffer.  
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Figure 25. Bottleneck buffer size (buffer limit= 1500 pkts) 

  
Figure 26. Bottleneck buffer size (buffer limit= 750 pkts) 
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In summary, combining with the figures in previous sections, the proposed 

post-failover rate control mechanism not only smoothes the aggregate throughput 

when a post-failover bottleneck exists, but also achieves stable buffer 

requirement and per-flow fairness in terms of bandwidth utilization. Meanwhile, 

compared to the non-rate controlled flows, a similar level of system throughput 

is preserved.  
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Chapter 8  

DISCUSSION & CONCLUSION 

In this thesis, a new scheme, called HALR, has been proposed to improve the 

TCP performance over the failover events in the HA cluster. HALR caches TCP 

packets selectively and resends them locally after the failover is finished. The scheme 

keeps the end-to-end TCP semantics and is compatible with existing TCP 

implementations. Furthermore, analytic models for TCP completion times were 

developed to characterize the effects of failover times and the effects of the proposed 

method. Analytical estimations were validated by ns-2 simulation experiments.  

The investigations lead to a number of main conclusions. First, using modeling 

results and ns-2 simulation, we show that HALR improves the end-to-end TCP 

performance over a failover by minimizing the unused flow time. Especially, HALR 

is useful for the short flow arriving during the failover process to resume its 

transmission after the failover immediately without waiting for a lengthy RTO (3 sec). 

Second, we find that TCP with HALR can avoid some of the retransmission timeouts 

that would be experienced if without HALR. Third, we find that if a false failure 

declaration is possible, a failover time close to or less than 3 sec might be a good 

balance. Finally, by the simulation on real packet trace, we show that HALR is a 

lightweight solution on memory requirements. Furthermore, if only the SYN packets 

received during the failover are cached, the memory requirement can be minimized. 

After failover events happen, in order to prevent the flows to suffer from potential 

system bandwidth bottleneck, the post-failover rate control mechanism is proposed. 

This mechanism utilizes window adjustment method to allocate fair share bandwidth 

to all active connections in system. An extensive set of simulations are carried to 
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evaluate the effects of post-failover rate control under different scenarios. Through 

simulation results, by triggering rate control upon failover, the system bandwidth is 

fairly allocated to flows. Also, the bottleneck buffer size is reduced, eliminating the 

occurrence of packet drops. Finally, this mechanism ensures smooth transfer for 

pass-through flows encountering post-failover bottleneck. 
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